Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.243
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732012

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
2.
J Exp Clin Cancer Res ; 43(1): 141, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745192

BACKGROUND: Neuroblastoma (NB) patients with amplified MYCN often face a grim prognosis and are resistant to existing therapies, yet MYCN protein is considered undruggable. KAP1 (also named TRIM28) plays a crucial role in multiple biological activities. This study aimed to investigate the relationship between KAP1 and MYCN in NB. METHODS: Transcriptome analyses and luciferase reporter assay identified that KAP1 was a downstream target of MYCN. The effects of KAP1 on cancer cell proliferation and colony formation were explored using the loss-of-function assays in vitro and in vivo. RNA stability detection was used to examine the influence of KAP1 on MYCN expression. The mechanisms of KAP1 to maintain MYCN mRNA stabilization were mainly investigated by mass spectrum, immunoprecipitation, RIP-qPCR, and western blotting. In addition, a xenograft mouse model was used to reveal the antitumor effect of STM2457 on NB. RESULTS: Here we identified KAP1 as a critical regulator of MYCN mRNA stability by protecting the RNA N6-methyladenosine (m6A) reader YTHDC1 protein degradation. KAP1 was highly expressed in clinical MYCN-amplified NB and was upregulated by MYCN. Reciprocally, KAP1 knockdown reduced MYCN mRNA stability and inhibited MYCN-amplified NB progression. Mechanistically, KAP1 regulated the stability of MYCN mRNA in an m6A-dependent manner. KAP1 formed a complex with YTHDC1 and RNA m6A writer METTL3 to regulate m6A-modified MYCN mRNA stability. KAP1 depletion decreased YTHDC1 protein stability and promoted MYCN mRNA degradation. Inhibiting MYCN mRNA m6A modification synergized with chemotherapy to restrain tumor progression in MYCN-amplified NB. CONCLUSIONS: Our research demonstrates that KAP1, transcriptionally activated by MYCN, forms a complex with YTHDC1 and METTL3, which in turn maintain the stabilization of MYCN mRNA in an m6A-dependent manner. Targeting m6A modification by STM2457, a small-molecule inhibitor of METTL3, could downregulate MYCN expression and attenuate tumor proliferation. This finding provides a new alternative putative therapeutic strategy for MYCN-amplified NB.


N-Myc Proto-Oncogene Protein , Neuroblastoma , Tripartite Motif-Containing Protein 28 , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Mice , Animals , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Tripartite Motif-Containing Protein 28/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Cell Line, Tumor , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Mice, Nude , Adenosine/analogs & derivatives , Adenosine/metabolism
3.
HLA ; 103(5): e15515, 2024 May.
Article En | MEDLINE | ID: mdl-38747019

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
4.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702304

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
5.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653778

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
6.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653965

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Anaplastic Lymphoma Kinase , Dibenzocycloheptenes , Farnesyltranstransferase , GTP Phosphohydrolases , MicroRNAs , Neuroblastoma , Piperidines , Protein Kinase Inhibitors , Pyridines , Animals , Female , Humans , Mice , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Gene Expression Regulation, Neoplastic/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Xenograft Model Antitumor Assays
7.
Methods Mol Biol ; 2806: 55-74, 2024.
Article En | MEDLINE | ID: mdl-38676796

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.


Neuroblastoma , Rhabdomyosarcoma , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Neuroblastoma/pathology , Neuroblastoma/genetics , Rhabdomyosarcoma/pathology , Xenograft Model Antitumor Assays/methods , Child , Disease Models, Animal , Heterografts , Precision Medicine/methods , Cell Line, Tumor
8.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 134-139, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678619

The purpose of this study was to explore the relationship between the MYCN gene, serum neuron-specific enolase (NSE), urinary vanillylmandelic acid (VMA) levels, and neuroblastoma pathological features and prognosis. Ninety-four children with neuroblastoma treated in the hospital were selected to compare the differences in MYCN gene amplification, serum NSE, and urinary VMA levels in children with different clinicopathological features and prognoses. The proportion of children with MYCN gene copy number ≥10 in INSS stage 3-4 was higher than that of children with INSS stage 1-2 (P < 0.05); the proportion of children with MYCN gene copy number ≥10 in high-risk children in the COG risk stratification was higher than that of children with intermediate and low risk (P < 0.05); the serum NSE of children aged >12 months higher than that of children aged ≤12 months (P < 0.05); serum NSE of children with tumors >500 cm3 higher than that of children with tumors ≤500 cm3 (P < 0.05); serum NSE and urinary VMA of children with INSS staging of stages 3-4 were higher than that of children with stages 1 to 2 (P < 0.05); serum NSE and urinary VMA in children with lymph node metastasis were higher than that of children without lymph node metastasis (P < 0.05); serum NSE of children with MYCN gene copy number ≥10 was higher than that of children without lymph node metastasis (P < 0.05); the proportion of children with MYCN gene copy number ≥10 who died, and the percentages of serum NSE and urinary VMA were higher than those of the surviving children (P < 0.05). MYCN gene amplification and serum NSE and urinary VMA levels were related to the age, tumor size, INSS stage, COG stage, lymph node metastasis, and prognosis of the children with neuroblastoma.


N-Myc Proto-Oncogene Protein , Neuroblastoma , Phosphopyruvate Hydratase , Vanilmandelic Acid , Humans , Neuroblastoma/genetics , Neuroblastoma/blood , Neuroblastoma/urine , Neuroblastoma/pathology , N-Myc Proto-Oncogene Protein/genetics , Male , Female , Prognosis , Infant , Child, Preschool , Phosphopyruvate Hydratase/blood , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/urine , Vanilmandelic Acid/urine , Vanilmandelic Acid/blood , Neoplasm Staging , Gene Dosage , Child , Gene Amplification , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine
9.
Neoplasia ; 52: 100997, 2024 06.
Article En | MEDLINE | ID: mdl-38669760

Neurodevelopmental cell communication plays a crucial role in neuroblastoma prognosis. However, determining the impact of these communication pathways on prognosis is challenging due to limited sample sizes and patchy clinical survival information of single cell RNA-seq data. To address this, we have developed the cell communication pathway prognostic model (CCPPM) in this study. CCPPM involves the identification of communication pathways through single-cell RNA-seq data, screening of prognosis-significant pathways using bulk RNA-seq data, conducting functional and attribute analysis of these pathways, and analyzing the post-effects of communication within these pathways. By employing the CCPPM, we have identified ten communication pathways significantly influencing neuroblastoma, all related to axongenesis and neural projection development, especially the BMP7-(BMPR1B-ACVR2B) communication pathway was found to promote tumor cell migration by activating the transcription factor SMAD1 and regulating UNK and MYCBP2. Notably, BMP7 expression was higher in neuroblastoma samples with distant metastases. In summary, CCPPM offers a novel approach to studying the influence of cell communication pathways on disease prognosis and identified detrimental communication pathways related to neurodevelopment.


Cell Communication , Neuroblastoma , Signal Transduction , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/genetics , Humans , Prognosis , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , Computational Biology/methods , Cell Line, Tumor , Gene Expression Profiling , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Cell Movement
11.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673990

Neuroblastoma is the most common extracranial solid tumor in children. It is a highly heterogeneous tumor consisting of different subcellular types and genetic abnormalities. Literature data confirm the biological and clinical complexity of this cancer, which requires a wider availability of gene targets for the implementation of personalized therapy. This paper presents a study of neuroblastoma samples from primary tumors of untreated patients. The focus of this analysis is to evaluate the impact that the inflammatory process may have on the pathogenesis of neuroblastoma. Eighty-eight gene profiles were selected and analyzed using a non-negative matrix factorization framework to extract a subset of genes relevant to the identification of an inflammatory phenotype, whose targets (PIK3CG, NFATC2, PIK3R2, VAV1, RAC2, COL6A2, COL6A3, COL12A1, COL14A1, ITGAL, ITGB7, FOS, PTGS2, PTPRC, ITPR3) allow further investigation. Based on the genetic signals automatically derived from the data used, neuroblastoma could be classified according to stage rather than as a "cold" or "poorly immunogenic" tumor.


Inflammation , Neuroblastoma , Humans , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Inflammation/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Transcriptome
12.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38508144

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Histone Demethylases , Neuroblastoma , Humans , N-Myc Proto-Oncogene Protein/genetics , Cell Line, Tumor , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Oncogene Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics
13.
J Biochem Mol Toxicol ; 38(4): e23685, 2024 Apr.
Article En | MEDLINE | ID: mdl-38495002

Neurodegeneration is linked to the progressive loss of neural function and is associated with several diseases. Hypoxia is a hallmark in many of these diseases, and several therapies have been developed to treat this disease, including gene expression therapies that should be tightly controlled to avoid side effects. Cells experiencing hypoxia undergo a series of physiological responses that are induced by the activation of various transcription factors. Modulation of microRNA (miRNA) expression to alter transcriptional regulation has been demonstrated to be beneficial in treating multiple diseases, and in this study, we therefore explored potential miRNA candidates that could influence hypoxia-induced nerve cell death. Our data suggest that in mouse neuroblasts Neuro-2a cells with hypoxia/reoxygenation (H/R), miR-337-3p is downregulated to increase the expression of Potassium channel tetramerization domain containing 11 (KCTD11) and subsequently promote apoptosis. Here, we demonstrate for the first time that KCTD11 plays a role in the cellular response to hypoxia, and we also provide a possible regulatory mechanism by identifying the axis of miR-337-3p/KCTD11 as a promising candidate modulator of nerve cell survival after H/R exposure.


MicroRNAs , Neuroblastoma , Animals , Mice , Down-Regulation , Gene Expression Regulation , Hypoxia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroblastoma/genetics
15.
Am J Hum Genet ; 111(4): 778-790, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38531365

Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.


Intellectual Disability , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Animals , Child , Humans , Developmental Disabilities/genetics , Exons , Intellectual Disability/genetics , Mammals/genetics , Muscle Hypotonia/genetics , Musculoskeletal Abnormalities/genetics , Neuroblastoma/genetics , Neurodevelopmental Disorders/genetics , Reactive Oxygen Species
16.
J Cancer Res Clin Oncol ; 150(3): 148, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38512513

INTRODUCTION: Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS: We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS: Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION: Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.


Machine Learning , Neuroblastoma , Humans , Prognosis , Risk Factors , Neuroblastoma/diagnosis , Neuroblastoma/genetics , Neuroblastoma/metabolism , DNA , Tumor Microenvironment , Forkhead Transcription Factors/metabolism , Calcium-Binding Proteins , Trans-Activators/metabolism
17.
J Cancer Res Clin Oncol ; 150(3): 109, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38427078

BACKGROUND: Neuroblastoma (NB), a prevalent pediatric solid tumor, presents formidable challenges due to its high malignancy and intricate pathogenesis. The role of disulfidptosis, a novel form of programmed cell death, remains poorly understood in the context of NB. METHODS: Gaussian mixture model (GMM)-identified disulfidptosis-related molecular subtypes in NB, differential gene analysis, survival analysis, and gene set variation analysis were conducted subsequently. Weighted gene co-expression network analysis (WGCNA) selected modular genes most relevant to the disulfidptosis core pathways. Integration of machine learning approaches revealed the combination of the Least absolute shrinkage and selection operator (LASSO) and Random Survival Forest (RSF) provided optimal dimensionality reduction of the modular genes. The resulting model was validated, and a nomogram assessed disulfidptosis characteristics in NB. Core genes were filtered and subjected to tumor phenotype and disulfidptosis-related experiments. RESULTS: GMM clustering revealed three distinct subtypes with diverse prognoses, showing significant variations in glucose metabolism, cytoskeletal structure, and tumor-related pathways. WGCNA highlighted the red module of genes highly correlated with disulfide isomerase activity, cytoskeleton formation, and glucose metabolism. The LASSO and RSF combination yielded the most accurate and stable prognostic model, with a significantly worse prognosis for high-scoring patients. Cytological experiments targeting core genes (CYFIP1, EMILIN1) revealed decreased cell proliferation, migration, invasion abilities, and evident cytoskeletal deformation upon core gene knockdown. CONCLUSIONS: This study showcases the utility of disulfidptosis-related gene scores for predicting prognosis and molecular subtypes of NB. The identified core genes, CYFIP1 and EMILIN1, hold promise as potential therapeutic targets and diagnostic markers for NB.


Neuroblastoma , Child , Humans , Adaptor Proteins, Signal Transducing , Apoptosis , Cell Proliferation/genetics , Glucose , Machine Learning , Neuroblastoma/genetics , Prognosis
18.
Neoplasma ; 71(1): 37-47, 2024 Feb.
Article En | MEDLINE | ID: mdl-38506031

Neuroblastoma is the most common extracranial solid tumor in children. The purpose of the present study is to detect the prognostic role and potential therapeutic efficacy of the T lymphoma invasion and metastasis 1 (Tiam1) in neuroblastoma. The overexpression of Tiam1 protein is frequently observed in neuroblastoma. Tiam1 expression is closely associated with adverse prognosis of neuroblastoma and risk group classification. Knockdown of TIAM1 by lentivirus expressing short hairpin RNA against TIAM1 (sh-TIAM1) inhibited the proliferation, invasion and cell-cycle progression, and promoted apoptosis of the neuroblastoma cell lines SH-SY5Y and SK-N-AS. Additionally, downregulation of the differentiation-related protein expression and decreased Rac1 expression was observed in the sh-TIAM1-transfected SH-SY5Y cells. In vivo, nude mice bearing TIAM1 knockdown SH-SY5Y cells showed improved overall survival and tumor growth suppression. The results demonstrate that inhibition of Tiam1 expression is a potential strategy for targeted therapy in neuroblastoma.


Lymphoma , Neuroblastoma , Animals , Mice , Child , Humans , Neuroblastoma/genetics , Mice, Nude , Signal Transduction , Cell Proliferation/genetics , Cell Line, Tumor
19.
Methods Mol Biol ; 2761: 81-91, 2024.
Article En | MEDLINE | ID: mdl-38427231

The epigenome, consisting of chemical modifications to DNA and histone proteins, can alter gene expression. Clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) systems enable precise target gene-specific gene modulation by attaching different "effector" domains to the dCas9 protein to activate or repress specific genes. CRISPR/dCas9-SunTag is an improved system version, allowing more efficient and precise gene activation or repression by recruiting multiple copies of the protein of interest. A CRISPR/dCas9-SunTag-based modular epigenetic toolkit was developed, enabling gene-specific epigenetic architecture modulation. This protocol generated a stable SH-SY5Y cell line expressing the CRISPR/dCas9-SunTag-JARID1A system to study H3K4Me3-mediated promoter regulation at a 200-400 bp of fine resolution. The procedure involved designing sgRNAs, subcloning dCas9-5XGCN4 into pLvx-DsRed, validating epigenetic mark changes with ChIP, and validating gene expression changes with RT-qPCR. This epigenetic toolkit is valuable for researchers to understand the relationship between gene-specific epigenetic modifications and gene expression.


CRISPR-Cas Systems , Neuroblastoma , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , RNA, Guide, CRISPR-Cas Systems , Neuroblastoma/genetics , Epigenesis, Genetic
20.
FEBS Open Bio ; 14(5): 867-882, 2024 May.
Article En | MEDLINE | ID: mdl-38538106

The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.


Discoidin Domain Receptor 2 , Neuroblastoma , Signal Transduction , Transcriptome , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Discoidin Domain Receptor 2/metabolism , Discoidin Domain Receptor 2/genetics , Transcriptome/genetics , Signal Transduction/genetics , Cell Line, Tumor , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic/genetics , Mechanotransduction, Cellular/genetics , Cell Differentiation/genetics , Cell Proliferation/genetics
...